Imagine a giant solar harvester flying in geosynchronous orbit, which using solar energy, beams radiation to a single point 36, 000 km away. It would look like a space weapon straight out of Star Wars. Surprisingly, this concept might be the next so-called “moonshot” project that humanity needs to move forward. In space-based solar power generation, a solar harvester in space like the one discussed above would generate DC current from solar radiation using photovoltaic cells, and then convert it into microwaves. These microwaves would then be beamed to a rectifying antenna (or a rectenna) on the ground, which would convert them back into direct current (DC). Finally, a converter would change the DC energy to AC to be supplied into the grid.1

With ever-increasing global energy consumption and rising concerns of climate change due to the burning of fossil fuels, there has been increasing interest in alternative energy sources. Although renewable energy technology is improving every year, its current energy capacity is not enough to obviate the need for fossil fuels. Currently, wind and solar sources have capacity factors (a ratio of an energy source’s actual output over a period of time to its potential output) of around 34 and 26 percent, respectively. In comparison, nuclear and coal sources have capacity factors of 90 and 70 percent, respectively.2 Generation of energy using space solar power satellites (SSPSs) could pave the path humanity needs to move towards a cleaner future. Unlike traditional solar power, which relies on favorable weather conditions, SSPSs would allow continuous, green energy generation.

Although space-based solar power (SBSP) might sound pioneering, scientists have been flirting with the idea since Dr. Peter Glaser introduced the concept in 1968. Essentially, SBSP systems can be characterized by three elements: a large solar collector in geostationary orbit fitted with reflective mirrors, wireless transmission via microwave or laser, and a receiving station on Earth armed with rectennas.3 Such an implementation would require complete proficiency in reliable space transportation, efficient power generation and capture, practical wireless transmission of power, economical satellite design, and precise satellite-antenna calibration systems. Collectively, these goals might seem insurmountable, but taken separately, they are actually feasible. Using the principles of optics, scientists are optimizing space station design to maximize energy collection.4 There have been advancements in rectennas that allow the capture of even weak, ambient microwaves.5 With the pace of advancement speeding up every year, it’s easy to feel like the future of renewable energy is rapidly approaching. However, these advancements will be limited to literature if there are no global movements to utilize SBSP.

Japan Aerospace Exploration Agency (JAXA) has taken the lead in translating SBSP from the page to the launch pad. Due to its lack of fossil fuel resources and the 2011 incident at the Fukushima Daiichi nuclear plant, Japan, in desperate need of alternative energy sources, has proposed a 25-year technological roadmap to the development of a one-gigawatt SSPS station. To accomplish this incredible feat, Japan plans on deploying a 10,000 metric ton solar collector that would reside in geostationary orbit around Earth.6 Surprisingly, the difficult aspect is not building and launching the giant solar collector; it’s the technical challenge of transmitting the energy back to earth both accurately and efficiently. This is where JAXA has focused its research.

Historically, wireless power transmission has been accomplished via laser or microwave transmissions. Laser and microwave radiation are similar in many ways, but when it comes down to which one to use for SBSP, microwaves are a clear winner. Microwaves have longer wavelengths (usually lying between five and ten centimeters) than those of lasers (which often are around one micrometer), and are thus better able to penetrate Earth’s atmosphere.7 Accordingly, JAXA has focused on optimizing powerful and accurate microwave generation. JAXA has developed kW-class high-power microwave power transmission using phased, synchronized, power-transmitting antenna panels. Due to current limitations on communication technologies, JAXA has also developed advanced retrodirective systems, which allow high-accuracy beam pointing.8 In 2015, JAXA was able to deliver 1.8 kilowatts accurately to a rectenna 55 meters away which, according to JAXA, is the first time that so much power has been transmitted with any appreciable precision . Although this may seem insignificant compared to the 36,000 km transmissions required for a satellite in geosynchronous orbit, this is huge achievement for mankind. It demonstrates that large scale wireless transmission is a realistic option to power electric cars, transmission towers, and even satellites. JAXA,continuing on its roadmap, plans to conduct the first microwave power transmission in space by 2018.

Although the challenges ahead for space based solar power generation are enormous in both economic and technical terms, the results could be revolutionary. In a manner similar to the introduction of coal and oil, practical SBSP systems would completely alter human civilization. With continuous green energy generation, SBSP systems could solve our energy conflicts and allow progression to next phase of civilization. If everything goes well, air pollution and oil spills may merely be bygones.

References

  1. Sasaki, S. IEEE Spec. 2014, 51, 46-51.
  2. EIA (U.S. Energy Information Administration). www.eia.gov/electricity/monthly (accessed     Oct. 29, 2016).
  3. Wolfgang, S. Acta Astro. 2004, 55, 389-399.
  4. Yang, Y. et al. Acta Astro. 2016, 121, 51-58.
  5. Wang, R. et al. IEEE Trans. Micro. Theo. Tech. 2014, 62, 1080-1089.
  6. Sasaki, S. Japan Demoes Wireless Power Transmission for Space-Based Solar Farms. IEEE Spectrum [Online], March 16, 2015. http://spectrum.ieee.org/ (accessed Oct. 29, 2016).
  7. Summerer, L. et al. Concepts for wireless energy transmission via laser. Europeans Space Agency (ESA)-Advanced Concepts Team [Online], 2009. https://www.researchgate.net/profile/Leopold_Summerer/ (accessed Oct. 29, 2016).
  8. Japan Space Exploration Agency. Research on Microwave Wireless Power Transmission Technology. http://www.ard.jaxa.jp/eng/research/ssps/hmi-mssps.html (accessed Oct. 29, 2016).

 

Comment