Two hundred years ago, the average life expectancy oscillated between 30 and 40 years, as it had for centuries before. Medical knowledge was fairly limited to superstition and folk cures, and the science behind what actually caused disease and death was lacking. Since then, the average lifespan of human beings has skyrocketed due to scientific advancements in health care, such as an understanding of bacteria and infections. Today, new discoveries are being made in cellular biology which, in theory, could lead us to the next revolutionary leap in life span. Most promising among these recent discoveries is the manipulation of telomeres in order to slow the aging process, and the use of telomerase to identify cancerous cells.

Before understanding how telomeres can be utilized to increase the average lifespan of humans, it is essential to understand what a telomere is. When cells divide, their DNA must be copied so that all of the cells share an identical DNA sequence. However, the DNA cannot be copied all the way to the end of the strand, resulting in the loss of some DNA at the end of the sequence with every single replication.1 To prevent valuable genetic code from being cut off during cell division, our DNA contains telomeres, a meaningless combination of nucleotides at the end of our chromosomal sequences that can be cut off without consequences to the meaningful part of the DNA. Repeated cell replication causes these protective telomeres to become shorter and shorter, until valuable genetic code is eventually cut off, causing the cell to malfunction and ultimately die.1 The enzyme telomerase functions in cells to rebuild these constantly degrading telomeres, but its activity is relatively low in normal cells as compared to cancer cells.2

The applications of telomerase manipulation have only come up fairly recently, with the discovery of the functionality of both telomeres and telomerase in the mid 80’s by Nobel Prize winners Elizabeth Blackburn, Carol Grieder, and Jack Sjozak.3 Blackburn discovered a sequence at the end of chromosomes that was repeated several times, but could not determine what the purpose of this sequence was. At the same time, Sjozak was observing the degradation of minichromosomes, chromatin-like structures which replicated during cell division when introduced to a yeast cell. Together, they combined their work by isolating Blackburn’s repeating DNA sequences, attaching them to Sjozak’s minichromosomes, and then placing the minichromosomes back inside yeast cells. With the new addition to their DNA sequence, the minichromosomes did not degrade as they had before, thus proving that the purpose of the repeating DNA sequence, dubbed the telomere, was to protect the chromosome and delay cellular aging.

Because of the relationship between telomeres and cellular aging, many scientists theorize that cell longevity could be enhanced by finding a way to control telomere degradation and keep protective caps on the end of cell DNA indefinitely.1 Were this to be accomplished, the cells would be able to divide an infinite number of times before they started to lose valuable genetic code, which would theoretically extend the life of the organism as a whole.

In addition, studies into telomeres have revealed new ways of combatting cancer. Although there are many subtypes of cancer, all variations of cancer involve the uncontrollable, rapid division of cells. Despite this rapid division, the telomeres of cancer cells do not shorten like those of a normal cell upon division, otherwise this rapid division would be impossible. Cancer cells are likely able to maintain their telomeres due to their higher levels of telomerase.3 This knowledge allows scientists to use telomerase levels as an indicator of cancerous cells, and then proceed to target these cells. Vaccines that target telomerase production have the potential to be the newest weapon in combatting cancer.2 Cancerous cells continue to proliferate at an uncontrollable rate even when telomerase production is interrupted. However, without the telomerase to protect their telomeres from degradation, these cells eventually die.

As the scientific community advances its ability to control telomeres, it comes closer to controlling the process of cellular reproduction, one of the many factors associated with human aging and cancerous cells. With knowledge in these areas continuing to develop, the possibility of completely eradicating cancer and slowing the aging process is becoming more and more realistic.

References

  1. Genetic Science Learning Center. Learn.Genetics. http://learn.genetics.utah.edu (accessed Oct. 5, 2016).
  2. Shay, J. W.; Woodring W. E.  NRD. [Online] 2016, 5. http://www.nature.com/nrd/journal/v5/n7/full/nrd2081.html (accessed Oct. 16, 2016).
  3. The 2009 Nobel Prize in Physiology or Medicine - Press Release. The Nobel Prize. https://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/press.html (accessed Oct. 4, 2016).

Comment